
AutoVFX: Physically Realistic Video Editing from Natural Language Instructions

Hao-Yu Hsu Zhi-Hao Lin Albert J. Zhai Hongchi Xia Shenlong Wang

University of Illinois at Urbana-Champaign

https://haoyuhsu.github.io/autovfx-website/

t

“Make the vase look like mirror”

AutoVFX

“Make the vase bigger and drop it”

“Throw a basketball with fire towards the vase”

“Insert an animated Pikachu on the table”

Figure 1. AutoVFX takes a video and language instructions as input, and automatically generates programs to produce visual effects and

render a new video according to the instructions. It can modify appearance and geometry, enable dynamic interactions, apply particle effects,

and even insert animated characters, producing results that are photorealistic, physically-plausible, and easily controllable.

Abstract

Modern visual effects (VFX) software has made it possi-

ble for skilled artists to create imagery of virtually anything.

However, the creation process remains laborious, complex,

and largely inaccessible to everyday users. In this work, we

present AutoVFX, a framework that automatically creates re-

alistic and dynamic VFX videos from a single video and nat-

ural language instructions. By carefully integrating neural

scene modeling, LLM-based code generation, and physical

simulation, AutoVFX is able to provide physically-grounded,

photorealistic editing effects that can be controlled directly

using natural language instructions. We conduct extensive

experiments to validate AutoVFX’s efficacy across a diverse

spectrum of videos and instructions. Quantitative and quali-

tative results suggest that AutoVFX outperforms all compet-

ing methods by a large margin in generative quality, instruc-

tion alignment, editing versatility, and physical plausibility.

1. Introduction

Visual effects (VFX) combine realistic video footage with

computer-generated imagery to create novel, photorealistic

visuals. Recent advances in graphics, vision, and physi-

cal simulation have made it possible to produce VFX that

depict virtually anything—even those that are too costly,

time-consuming, dangerous, or impossible to capture in real

life. As a result, VFX have become essential in modern film-

making, ads, simulation, AR/VR, etc. However, the process

remains laborious, complex, and expensive, requiring expert

skills and professional software [3, 17, 18, 44], making it

largely inaccessible to everyday users.

A promising approach to democratizing VFX is to treat it

as a generative video editing problem, where raw video and

language prompts are used to generate new videos reflecting

the original content and given instructions [4, 10, 19, 32, 50,

64, 65, 69, 92, 94, 103]. This method leverages advances in

generative modeling, learning from large-scale internet data

to produce controllable video. Successes have been seen in

deepfake videos, fashion, driving, and robotics [15, 31, 52,

87, 102]. However, this purely data-driven generative editing

approach hasn’t yet replaced traditional VFX pipelines due

to challenges in achieving guaranteed physical plausibility,

precise 3D-aware control, and various special effects.

Another appealing alternative is to build a 3D represen-

tation from video input, apply edits like object insertion or

texture changes, and then render the final output [12, 13,

22, 25, 26, 36, 53, 55–57, 63, 71, 83, 100, 113, 114]. While

this approach aligns well with the VFX pipeline, it is often

limited in editing capabilities and still requires manual inter-

1

https://haoyuhsu.github.io/autovfx-website/

“Throw a basketball with fire

towards the vase”

Input Video

LLM Code Generation

Input Instruction

Scene Modeling

(SfM, GSplats, Neural SDF,

SAM, HDR light)

Holistic Scene Models

LightingAppearance

Geometry Semantics

def auto_vfx(video):

scene modeling and understanding
scene = scene_modeling(video)

generate object asset
ball = retrieve(”basketball”)
if ball is None:

ball = generate(”basketball”)
fireball = add_fire(ball)

segment and localize existing objects from the scene
vase = localize_object(scene, “vase”)
vase = enable_fracture(vase)

animate new objects
traj = set_trajectory(fireball, vase)
animated_objs = set_animation(fireball, vase, traj)

physical interaction with existing scene
output_scene = simulate(scene, animated_objs)

render and composite
output_video = composite(video, render(output_scene))

return output_video

Physical Simulation

add_fire() fracture()

…

Animate

set_trajectory()

…

3D Asset Retrieval

retrieval()

…

Rendering & Composite

+ +

composite()

…

VFX Modules

Figure 2. AutoVFX framework. Our instruction-guided video editing framework consists of three main modules: (1) 3D Scene Modeling

(left), which integrates 3D reconstruction and scene understanding models; (2) Program Generation (middle), where LLMs generate editing

programs based on user instructions; and (3) VFX Modules (right), which include predefined functions specialized for various editing tasks.

These components are integrated with a physically-based simulation and rendering engine (e.g., Blender) to generate the final video.

action with cumbersome interfaces, making it difficult for

everyday users. Bridging this gap is essential to make 3D

scene editing capable of handling most visual effects while

remaining accessible to everyone.

In this work, we present AutoVFX, a framework that au-

tomatically creates realistic and dynamic VFX videos from a

single video and natural language instructions. At the core of

our method is a novel integration of neural scene modeling,

LLM-based code generation, and physical simulation. First,

we establish a holistic scene model that encodes rich geom-

etry, appearance, and semantics from the input video. This

model serves as the foundation for a variety of scene editing,

simulation, and rendering capabilities, which we organize

into a collection of executable functions. Next, AutoVFX

takes simple language editing instructions and converts them

into programs using large language models (LLMs). These

programs consist of a sequence of calls to our predefined

functions. Finally, the generated code is executed, producing

a free-viewpoint video that reflects the instructed changes.

Fig. 2 illustrates the overall framework.

AutoVFX combines the strengths of generative editing

and physical simulation, yet is uniquely set apart from

both. Like traditional VFX, AutoVFX produces videos with

physics-grounded, controllable, and photorealistic effects.

At the same time, similar to generative editing, we support

open-world natural language instructions, allowing anyone

to edit a video by simply describing the desired effects.

We conduct extensive experiments to validate AutoVFX’s

efficacy across a diverse spectrum of videos and instructions.

We also perform user studies and qualitative and quantitative

comparisons with existing video and scene editing meth-

ods. Experimental results suggest AutoVFX outperforms

all competing methods by a large margin in generative qual-

ity, instruction alignment, editing versatility, and physical

plausibility. This demonstrates the effectiveness and con-

venience of our approach, highlighting its potential as a

valuable framework to democratize VFX and pave the way

for future integration of even more capabilities to further

enhance realism in automatic VFX.

2

Table 1. Comparison of existing and proposed methods for visual editing. Generative editing models lack physical plausibility and

precise controllability. Existing physics-based editing methods have complicated interfaces and are limited in their range of editing capacities.

Our method, AutoVFX, enjoys a convenient natural language interface while providing the widest range of capabilities.

Method

Input & Output Editing Capacities

Real World

Video Editing

Free-Viewpoint

Rendering

Editing

Interface

Open-world

Query

Object

Insertion

Object

Removal

Object

Rearrange

Appearance

Change

Animated

Objects

Physics

Simulation

Particle

Effects

Visual Programming [35] ✓ × Natural Language ✓ ✓ ✓ ✓ ✓ × × ×

FRESCO [103] ✓ × Natural Language ✓ × × × ✓ × × ×

ClimateNeRF [53] ✓ ✓ Predefined Scripts × × × × ✓ × × ✓

Feature Splatting [73] ✓ ✓ Predefined Scripts ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

GaussianEditor [13] ✓ ✓ Graphical ✓ ✓ ✓ × ✓ × × ×

Gaussian Grouping [105] ✓ ✓ Graphical ✓ ✓ ✓ ✓ ✓ × × ×

PhysGaussian [98] ✓ ✓ Graphical × × × × × × ✓ ×

VR-GS [47] ✓ ✓ Graphical × ✓ ✓ ✓ × × ✓ ×

Gaussian Splashing [28] ✓ ✓ Graphical × ✓ ✓ ✓ × × ✓ ✓

DMRF [71] ✓ ✓ Graphical × ✓ × × × ✓ ✓ ✓

Instruct-N2N [36] ✓ ✓ Natural Language ✓ × × × ✓ × × ×

DGE [12] ✓ ✓ Natural Language ✓ × × × ✓ × × ×

Chat-Edit-3D [26] ✓ ✓ Natural Language ✓ ✓ ✓ ✓ ✓ × × ×

ChatSim [90] ✓ ✓ Natural Language × ✓ ✓ ✓ ✓ ✓ × ×

AutoVFX(Ours) ✓ ✓ Natural Language ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2. Related Work

Our framework is closely related to several areas, including

physical simulation on NeRFs, instruction-guided visual

editing, and LLMs for code generation, integrating aspects

of all three. Next, we will discuss these areas and highlight

and contrast notable works in Tab. 1.

Physical Simulation on NeRFs and 3D Gaussians Inte-

grating physics simulation into NeRFs and 3D Gaussians

enables immersive and convincing dynamic effects within

captured scenes. Several lines of work have explored various

physical interactions, including rigid body object interac-

tion [90, 96], particle physics effects such as flooding and

fog [28, 53], elastic deformable objects [111], and plastic ob-

jects [47, 70, 98]. The key idea is to enable captured scenes

to faithfully interact with new events or entities through

physical simulation. However, this is challenging for vanilla

neural implicit models, as conventional simulation often re-

quires high-fidelity surface geometry, which is not explicit in

these models. Therefore, various approaches seek to extract

meshes from NeRFs [16, 47, 66, 70, 99, 108] to facilitate

simulation, while others adapt implicit or particle-based sim-

ulation so that it can be directly applied to implicit models or

Gaussians [27, 28, 51, 98]. AutoVFX explores a hybrid rep-

resentation where meshes are used for physical interaction

and Gaussians are stacked on the mesh surface for rendering,

combining the best of both worlds. Another challenge is

that some physical interactions require an understanding of

physical properties. Various approaches address this through

inverse physics [51, 111], common sense knowledge in large

foundation models [29, 59, 109], or generative models [111].

Most works on physical simulation, however, are driven by

domain-specific scripts rather than natural language instruc-

tions, often restricting them to specific physical effects and

limiting their user base. AutoVFX seeks to bridge this gap

by using LLMs to convert language instructions into simula-

tion programs and supporting numerous dynamical effects

through off-the-shelf simulators.

Instruction-based Visual Editing Recent advancements

in visual-language models have made visual editing more

accessible by allowing users to edit a wide range of con-

tent, such as images, videos, and 3D scenes, using lan-

guage instructions [8, 29, 36, 50, 103] instead of relying

on GUI interactions or script programs [13, 47, 53, 73, 105].

Text- and image-conditioned generative models, particularly

diffusion-based approaches [37, 79], have been explored

for text-guided image [6, 8, 62, 79, 110] and video [4, 10,

19, 32, 50, 64, 65, 69, 92, 94, 103] editing. Language-

embedded NeRFs extend this generative editing capability to

3D scenes [12, 13, 22, 25, 36, 63, 85, 100, 113, 114]. How-

ever, mapping text instructions to desired edits in videos and

scenes purely through diffusion models can be challenging,

particularly when tasks involve complex steps, dynamic in-

teractions, or physics, which can affect instruction alignment,

physical plausibility, or realism. To address this, some meth-

ods use large language models (LLMs) to break down tasks

into subtasks [25, 26, 90] or generate executable programs

based on instructions [35, 60]. AutoVFX belongs to this

latter category but demonstrates significantly richer capabil-

ities, such as dynamic visual effects, animated objects and

physical interaction, compared to these methods.

LLMs for Code Generation The powerful capabilities of

large language models (LLMs) have revolutionized code gen-

eration based on natural language descriptions. By providing

in-context examples, LLMs can generate code snippets in

specific formats or syntaxes. Studies such as [2, 11, 23] have

explored the effectiveness of LLMs in solving math and code

problems. LLM-based code generation has recently been

investigated in vision and robotics. Many works adopt LLMs

3

Context

You are a helpful assistant who writes good Python code for editing 3D scenes.

Please complete the code whenever I give you a new query.

• Be thorough and thoughtful in your code.

…

Example 1

Query: Insert an apple and break it into pieces in the middle of the video.

Program:
apple = retrieve_asset(scene, 'apple')
insert_object(scene, apple)
add_event(scene, apple, 'break’,
start_frame=scene.total_frames//2)

Example 2

…

User Instruction

Query: Place a cup on the table.

table_obj = detect_object(scene, 'table')

pos = sample_point_on_object(scene, table_obj)

cup = retrieve_asset(scene, 'cup')

cup = translate_object(cup, pos)

insert_object(scene, cup)

C
o

n
te

x
t

E
x
a

m
p

le
s

U
se

r

In
st

ru
ct

io
n

G
e

n
e

ra
te

d

P
ro

g
ra

m

Figure 3. Program generation. The LLM generates the editing

program through in-context learning. With provided context and

examples, it learns to call VFX modules and, given unseen user

instructions (blue block), generates the program (orange block).

for decision-making in embodied AI, including tasks like ma-

nipulation [42, 54, 84, 101] and navigation [61]. Recently,

LLM-based programs for visual content creation have gained

attention, with notable progress in 2D understanding and

editing [35], driving simulation [26], video generation [60],

and procedural 3D scene generation [30, 41, 75, 76, 112]. In

our method, we harness GPT-4 to interpret natural language

descriptions into executable programs for creating diverse

visual effects for generic real-world videos.

3. Text-Driven VFX Creator

AutoVFX takes as input a video and a natural language edit-

ing prompt, and outputs an edited free-viewpoint video. The

core idea is to uniquely combine the code generation capa-

bilities of LLMs with 3D scene modeling and physics-based

simulation techniques. Fig. 2 depicts the overall framework.

First, we harness various 3D vision methods to estimate key

scene properties from the input video (Sec. 3.1). This lays

the foundation for a variety of scene editing, simulation, and

rendering capabilities, which we organize into a collection

of executable modules (Sec. 3.2, Sec. 3.3). An LLM is used

to convert the natural language editing instructions into a

program calling these functions (Sec. 3.4). Finally, the gener-

ated program is executed, producing a free-viewpoint video

that reflects the instructed changes.

3.1. 3D Scene Modeling

Photo-realistic, physics-based VFX creation requires mod-

eling several key properties of the captured scene, namely

geometry, appearance, semantics, and lighting. We employ

a variety of recent scene understanding models to estimate

these properties, including separate models for geometry and

appearance in order to achieve both high simulation fidelity

and photorealistic rendering.

Geometry Modeling the 3D geometry of the scene is es-

sential for any sort of object insertion, removal, or simula-

tion. We first run COLMAP [81] to infer the camera poses

of each frame. We then capture the geometry in the form of

a triangle mesh produced by BakedSDF [104], a multi-view

reconstruction method that optimizes a hybrid implicit neu-

ral representation that encodes the signed distance field of

the scene, and then bakes the representation onto a triangu-

lated mesh. It achieves a desirable balance between surface

accuracy, completeness, and efficiency. We choose to use a

mesh representation because it can be directly loaded into

a standard VFX pipeline, rendered efficiently, and further

enables accurate physical simulation. Moreover, it serves as

the geometry proxy for object instance extraction.

Appearance We capture the appearance of the scene in

two ways. First, we use SuGaR [33], a Gaussian Splat-

ting [48] based novel view synthesis method, to enable free-

view rendering. Although SuGaR can provide realistics

renderings, it cannot be directly incorporated into physical-

based rendering, making it unsuitable for modeling reflective

effects on inserted objects or material editing. Thus, we

also represent the scene by texturing the BakedSDF mesh,

which has lower visual fidelity but can be integrated with

physically-based rendering. This textured mesh is used for

shadow mapping and encoding multi-bounce effects.

Semantics In many cases, a user would like to perform

an edit localized to a specific semantic region of the scene,

for example “make the car on fire”. To enable such edits,

we use Grounding SAM [58] to perform open-vocabulary

instance segmentation and DEVA [14] to associate the in-

stances across frames. To lift video segmentation to 3D,

we first un-project each pixel from the 2D segmentation

mask into the 3D scene geometry. A voting mechanism

is used to determine the visibility of mesh vertices across

multiple camera views. By setting a threshold for visibil-

ity, we select mesh faces that meet or exceed this threshold.

Next, we find 3D Gaussians that are closest to these selected

mesh faces and render them to produce an alpha image. We

then calculate the average mean Intersection over Union

(mIoU) between the rendered alpha image and the original

segmentation masks. Finally, we select the mesh faces and

3D Gaussians with the highest mIoU, representing the most

accurate 3D segmentation.

Lighting Accurate lighting estimation ensures that all el-

ements within the scene are coherently illuminated. We

estimate the environmental lighting of a scene in two ways.

For fully captured indoor scenes, such as those in Scan-

Net++ [106], we unproject the over-saturated image pixels

4

into space and use majority voting to determine the esti-

mated emitter meshes. These meshes with emissions lights

are subsequently imported into the renderer to serve as light

sources. For partially captured indoor scenes and outdoor

scenes, such as those in MipNeRF360 [5], we use Diffu-

sionLight [67] to inpaint chrome balls in the center of initial

frame at multiple exposure levels. An high dynamic range

(HDR) map is then generated from these inpainted frames

and imported into the renderer as an environmental light.

3.2. Scene Editing and Simulation

The multimodal 3D scene modeling described above paves

the way for a wide assortment of editing, simulation, and

rendering operations to be performed. We design a suite of

intuitive modules that can be seamlessly composed together

to provide a rich set of VFX capabilities. We note that this

modular framework also allows new capabilities to be easily

added via registering new modules. We describe the specific

techniques used within each module below.

3D Asset Creation To enable diverse object insertions, we

use the Objaverse 1.0 dataset [21] and a high-quality subset

from Richdreamer [72] with 280k annotated 3D assets. We

adopt a twofold approach for 3D asset creation. We first rank

3D assets using Sentence-BERT [77] to match query text

and identify the top K candidates, then refine the selection

with CLIP [74] based on multi-view renderings to select best

aligned asset. For text queries beyond existing descriptions,

we use Meshy AI to generate high-quality 3D assets with

PBR materials, expanding the range of insertable objects.

Insertion To achieve realistic object insertion, two critical

properties must be accurately determined: position and scale.

To ensure plausible positioning of objects, we sample the

centers of triangles from the supporting mesh that are suffi-

ciently flat to provide accurate support for the objects. For

scaling, we utilize GPT-4V [1] models to estimate the real-

world dimensions of 3D assets. Detailed prompts for scale

estimation are illustrated in the supplementary material.

Removal To effectively remove a specific instance from

a scene, we begin by extracting the target objects using

semantic modules. We remove these Gaussian points along

with their associated mesh faces. For geometric restoration,

we employ a planar mesh to cover the exposed area on the

bottom. For appearance restoration, we first use LaMa [88]

to inpaint the missing regions across all video frames. Then,

we fine-tune the current 3D Gaussian Splatting model on the

inpainted frames to ensure a 3D-consistent recovery.

Material Editing Accurate material editing ensures 3D

assets responding correctly to lighting, shading, and envi-

ronmental conditions, helping them blend seamlessly with

live-action footage for convincing visual effects. We provide

multiple options for material editing, all of which result in

modifications to the material nodes of a 3D asset in the ren-

derer. Users can adjust parameters such as metallic, specular,

and roughness values of an asset. Users can also modify the

overall color of an asset by altering the color intensity in the

texture image of an 3D asset. We also support queries by

material name, enabling a search across a material database

sourced from PolyHaven. The queried material can then be

imported and applied to all relevant material nodes.

Physical Simulation Because our scene model is directly

compatible with Blender, we can leverage its powerful simu-

lation capabilities by simply calling functions from its sim-

ulation library. We use these functions to enable simula-

tions of rigid-body physics and particle effects. Rigid-body

physics in Blender is based on the Bullet physics engine [20].

To achieve both accurate and realistic object interactions, we

pre-compute the center of mass and convex hull for collision

checking of any interactive objects. Particle effects, such

as smoke and fire, rely upon mantaflow [89]. We modify

the default simulation settings to ensure convincing effects.

Further details are provided in the supplementary.

3.3. Scene Rendering and Video Compositing

We use a careful rendering and compositing scheme in order

to produce a photorealistic video result. First, we render in-

serted objects while keeping the background mesh invisible

to first-bounces during raytracing but visible to higher-order

bounces. This allows the rendered objects to be affected by

lighting from the background. Next, we set the background

mesh to be visible and render twice: with and without the

inserted objects. We use the ratio of the pixel values between

these two as an approximation of the objects’ effects on the

background surfaces. This ratio is multiplied to either a

SuGaR rendering or the original video frames, depending

on if novel views are desired. Finally, we alpha-blend the

inserted objects into the video, using depth maps of the back-

ground mesh for occlusion reasoning. If the objects contain

fire (emissive transparent elements), we use premultiplied

alpha-blending; otherwise, we use straight alpha-blending.

3.4. LLM Integration

AutoVFX aims to enable the creation of VFX directly from

natural language instructions, providing a user-friendly in-

terface accessible to anyone. Towards this goal, we integrate

our editing modules into an API within an LLM-agent frame-

work, drawing inspiration from recent works such as Code-

as-Policies [54] and Visual Programming [35]. Leveraging

GPT-4 [1], we prompt the model with in-context examples

that pair editing instructions with corresponding programs

composed of our predefined editing functions. The LLM

5

“Simulate books falling from the sofa.” “Insert an animated dragon moving around the floor.”

“Insert computer on the table emitting smoke.” “Setup camp fire on the floor.”

“Insert a mirrored Pikachu and a metallic Pikachu on the table.” “Generate a smiling sunflower on the sink.”

“Drop four barrels onto the floor with texture modified.” “Break the sculpture.”

Figure 4. Dynamic VFX video editing using AutoVFX. Our approach enables physical interaction, articulated animation, particle effects,

insertion of generated 3D assets, material editing, and geometry fracturing.

then generates a program that is directly executed to perform

the specified scene edits.

Modular Function Encapsulation Our method encapsu-

lates predefined editing modules into callable and executable

functions, which can be combined to form comprehensive

programs. Scene objects are represented as Python dictionar-

ies, facilitating straightforward and interpretable edits. Each

function’s parameters are fully transparent, allowing users

with varying levels of programming expertise to manipulate

the process. A full list of the predefined modules is available

in the supplementary material.

LLM-driven Program Composition and Execution To

ensure GPT-4 effectively composes these functions into exe-

cutable programs, we design prompts that guide the model.

These prompts include examples demonstrating the combi-

nation of predefined functions into Python-like scripts that

represent the desired scene edits. Once generated, the pro-

gram is executed within a Python interpreter, triggering the

associated simulations or rendering processes to produce the

final visual effect. As illustrated in Fig. 3, this approach

simplifies the creation of complex visual effects, making it

accessible to a broader audience through natural language

instructions. The system’s modular design also provides

flexibility and scalability, allowing users to customize and

extend functionality as needed.

4. Experiments

We evaluate AutoVFX across a diverse set of scenes and

editing prompts and provide both qualitative and quantitative

comparisons with other related methods.

4.1. Experimental Details

Dataset & Preprocessing We adopt scenes from real-

world datasets such as Mip-NeRF360 [5], Tanks & Tem-

ples [49], ScanNet++ [106], and Waymo dataset [86] to

demonstrate our editing capabilities across diverse scenarios.

We use COLMAP [80] to extract camera poses and sparse

point clouds from images for GSplat initialization.

Baselines We compare our method with three text-based

visual editing methods: Instruct-N2N [36], DGE [12] and

FRESCO [103]. Instruct-N2N and DGE both perform ed-

its on 3D scene representations based on text descriptions,

with the former utilizing NeRF and the latter relying on 3D

Gaussians. FRESCO, on the other hand, translates an input

video to align with a target text prompt. For our experiments,

we set the guidance scale to 12.5 for DGE to achieve more

noticeable edits. Apart from this adjustment, all experimen-

tal setups adhere to the default settings of each method to

ensure a fair comparison. The qualitative results for Instruct-

N2N and DGE are obtained by rendering from the edited 3D

representations.

6

Table 2. Quantitative comparison with other methods. We employ automatic metrics and human evaluation to evaluate the performance.

AutoVFX consistently outperforms baseline methods across various metrics.

Method

Semantic Consistency Measures Multimodal LLM Quality Evaluation User Study

Object

Detection

CLIP

Similarity

CLIP Directional

Similarity

Photo-

realism

Text

Alignment

Structure

Preservation

Overall

Quality

Text

Alignment

Video

Quality

Instruct-N2N [36] 0.343 0.209 0.019 0.402 0.329 0.440 0.043 0.07 0.04

DGE [12] 0.347 0.195 0.278 0.562 0.312 0.619 0.106 0.06 0.03

FRESCO [103] 0.373 0.214 0.009 0.622 0.427 0.632 0.204 0.04 0.02

AutoVFX (Ours) 0.537 0.206 0.419 0.735 0.791 0.749 0.647 0.83 0.90

Implementation Details To render objects that are af-

fected by rigid-body physics, we store the rigid transfor-

mations at each timestep and apply them to the 3D Gaus-

sians during rendering. For animating objects based on

keypoints, we use Bézier interpolation to produce a smooth

trajectory. Additional implementation details regarding the

various VFX modules can be found in the supplementary.

4.2. Qualitative evaluation

Qualitative comparison In Fig. 5, we compare the visual

quality of static scene editing across different methods. Our

approach outperforms baselines in object insertion and ma-

nipulation, delivering realistic and accurate edits while pre-

serving scene structure. In contrast, Instruct-N2N struggles

with localized editing, FRESCO fails at structural preser-

vation, and DGE, while producing realistic videos, cannot

ensure instruction alignment. Additionally, AutoVFX pro-

vides richer capabilities, such as precise material editing

(“make it mirror-like”), accurate object counting (“drop five

basketballs”), and advanced visual effects (“make it on fire”).

Dynamic video simulation We present additional results

for dynamic VFX video in Fig. 4. These highlight our

method’s ability to generate a wide range of realistic, physi-

cally plausible dynamic simulations from text instructions,

using modules like rigid body simulations, object animation,

smoke and fire, and object fracturing. None of the generative

editing baselines support this feature. We also conduct exper-

iments on autonomous driving simulation using the Waymo

dataset [86], as shown in Fig. 6. AutoVFX enables both

realistic rendering and realistic physical interaction between

cars in collision scenarios.

4.3. Quantitative evaluation

We also provide a quantitative evaluation of our method. The

evaluation is based on nine metrics categorized into three

groups: “Semantic Consistency Measures”, “Multimodal

LLM Quality Evaluation” and “User Study”. These met-

rics collectively provide a comprehensive assessment of the

quality and effectiveness of text-guided visual edits. The

quantitative results are presented in Table 2.

Semantic Consistency Measures We incorporate the

“Multiple Objects” metric from VBench [43] to verify the

presence of objects after editing. This metric assesses

whether multiple objects are correctly composed within the

edits using a detection module, ensuring that the desired

semantic content has been successfully modified. Instead

of using GRiT [93] as the detection module, we employ

Grounded-SAM [78] for this task. We assess the success

rate of visual content editing across all frames and for all

possible edits. We also adopt “CLIP Similarity” and “CLIP

Directional Similarity” metrics as proposed in DGE [12]

for evaluation. “CLIP Similarity” measures the alignment

between the text instructions and each edited frame, while

“CLIP Directional Similariy” evaluates the temporal consis-

tency of the edits across frames. Both metrics operate in

CLIP space. As shown in Table 2, our method significantly

outperforms other approaches in object detection score and

CLIP directional similarity score, while achieving compara-

ble results in CLIP similarity score. In particular, we improve

the object detection score by a large margin, suggesting that

our video edits reflect the goal of object-level changes. We

notice that CLIP similarity is less discriminative among all

methods and conjecture that this might be because global

CLIP is not sensitive to capturing local changes, such as the

insertion of small objects or dynamics. These results indicate

that our method effectively aligns the edited outcomes with

the provided text instructions.

Multimodal LLM Quality Evaluation Inspired by [95],

we utilize multimodal LLMs as a powerful, interpretable,

text-driven model for image quality assessment. Specifically,

we prompt GPT-4o to evaluate and compare the “Overall

Perceptual Quality” of four different methods based on three

criteria: “Text Alignment”, “Photorealism”, and “Structural

Preservation”. We also ask GPT-4o to assign a quality score

of each criterion to each method, ranging from 0 to 1, with

1 being the highest (detailed prompts could be found in

supplementary). From Table 2, our method outperforms

other approaches across all four metrics by a significant

margin. In particular, AutoVFX creates more realistic videos,

preserves structure better, and excels in “Text Alignment” by

a most prominent margin. This demonstrates that our video

editing produce high-quality and reasonable image edits that

fully reflect the desired text instructions, which is desirable

in downstream VFX applications.

7

“Make vase with flowers to be like a mirror.”

G
ar

d
en

“Add a cupcake on the metal plate.”

C
o
u
n
te

r

“Replace bulldozer with birthday cake at the same position.”

K
it

ch
en

“Duplicate the bulldozer twice: move one to (0, 0.5, 0) and make it metallic;”

“move the other to (0.5, 0, 0) and make it mirror-like.”

K
it

ch
en

Input Instruct-N2N [36] DGE [12] FRESCO [103] Ours

Figure 5. Qualitative comparison on static editing.

Input
“Insert a physics-enabled Benz 20 meters in front of us with random 2D rotation.

Add a Ferrari moving forward.”

Figure 6. Dynamic simulation of AutoVFXon driving scenes.

User Study We conduct a user study to evaluate “Text

Alignment” and “Overall Realism” of performed edits. To

address the potential bias where minimal changes to visual

content are perceived as more realistic, we structured the

survey as follows: first, users are asked to evaluate which

edited videos best aligned with the given text instructions,

allowing for multiple selections. In the second question,

users are required to choose the most realistic video from

the set of choices they previously selected. We collected a

total of 36 user samples. For detailed information on the

user study methodology, please refer to the supplementary

materials. As shown in Table 2, our method receives a

higher preference from users in both "Text Alignment" and

"Overall Realism" categories, showing that the edits are not

only accurate but also appealing to human judgment.

5. Conclusion

We presented AutoVFX, a system that automatically cre-

ates physically-grounded VFX given a monocular video and

natural language instructions. AutoVFX combines neural

scene modeling, LLM-based code generation, and physical

simulation to allow realistic and easily controllable VFX

creation. Experimental results demonstrate that AutoVFX

outperforms existing scene editing methods based on a va-

riety of practical criteria. We envision that AutoVFX will

facilitate both the acceleration and democratization of vi-

sual content creation, helping both experienced artists and

everyday users create the high-quality VFX that they desire.

8

Acknowledgement This project is supported by the Intel

AI SRS gift, Meta research grant, the IBM IIDAI Grant and

NSF Awards #2331878, #2340254, #2312102, #2414227,

and #2404385. Hao-Yu Hsu is supported by Siebel Scholar-

ship. We greatly appreciate the NCSA for providing com-

puting resources. We thank Derek Hoiem, Sarita Adve, Ben-

jamin Ummenhofer, Kai Yuan, Micheal Paulitsch, Katelyn

Gao, Quentin Leboutet for helpful discussions.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,

Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.

Gpt-4 technical report. arXiv preprint arXiv:2303.08774,

2023. 5

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,

Carrie Cai, Michael Terry, Quoc Le, et al. Program

synthesis with large language models. arXiv preprint

arXiv:2108.07732, 2021. 3

[3] Autodesk, INC. Maya, 2019. https:/ autodesk.com/maya. 1

[4] Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kas-

ten, and Tali Dekel. Text2live: Text-driven layered image

and video editing. In European Conference on Computer

Vision, pages 707–723. Springer, 2022. 1, 3

[5] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5470–5479, 2022. 5, 6

[6] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel

Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,

Zion English, Vikram Voleti, Adam Letts, et al. Stable video

diffusion: Scaling latent video diffusion models to large

datasets. arXiv preprint arXiv:2311.15127, 2023. 3

[7] Jeremiah U Brackbill, Douglas B Kothe, and Hans M Ruppel.

Flip: a low-dissipation, particle-in-cell method for fluid flow.

Computer Physics Communications, 48(1):25–38, 1988. 3

[8] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. In-

structpix2pix: Learning to follow image editing instructions.

In CVPR, 2023. 3

[9] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jé-

gou, Julien Mairal, Piotr Bojanowski, and Armand Joulin.

Emerging properties in self-supervised vision transformers.

In Proceedings of the International Conference on Computer

Vision (ICCV), 2021. 1

[10] Duygu Ceylan, Chun-Hao Huang, and Niloy J. Mitra.

Pix2video: Video editing using image diffusion. In ICCV,

2023. 1, 3

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Hen-

rique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards,

Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-

ating large language models trained on code. arXiv preprint

arXiv:2107.03374, 2021. 3

[12] Minghao Chen, Iro Laina, and Andrea Vedaldi. Dge: Direct

gaussian 3d editing by consistent multi-view editing. arXiv

preprint arXiv:2404.18929, 2024. 1, 3, 6, 7, 8

[13] Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xi-

aofeng Yang, Yikai Wang, Zhongang Cai, Lei Yang, Huap-

ing Liu, and Guosheng Lin. Gaussianeditor: Swift and

controllable 3d editing with gaussian splatting. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 21476–21485, 2024. 1,

3

[14] Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexan-

der Schwing, and Joon-Young Lee. Tracking anything

with decoupled video segmentation. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 1316–1326, 2023. 4, 1

[15] Yisol Choi, Sangkyung Kwak, Kyungmin Lee, Hyungwon

Choi, and Jinwoo Shin. Improving diffusion models for

virtual try-on. arXiv preprint arXiv:2403.05139, 2024. 1

[16] Chong Bao and Bangbang Yang, Zeng Junyi, Bao Hujun,

Zhang Yinda, Cui Zhaopeng, and Zhang Guofeng. Neumesh:

Learning disentangled neural mesh-based implicit field for

geometry and texture editing. In European Conference on

Computer Vision (ECCV), 2022. 3

[17] Mark Christiansen. Adobe After Effects CC Visual Effects

and Compositing Studio Techniques. Adobe Press, 2013. 1

[18] Blender Online Community. Blender - a 3D modelling and

rendering package. Blender Foundation, Stichting Blender

Foundation, Amsterdam, 2018. 1

[19] Yuren Cong, Mengmeng Xu, Christian Simon, Shoufa Chen,

Jiawei Ren, Yanping Xie, Juan-Manuel Perez-Rua, Bodo

Rosenhahn, Tao Xiang, and Sen He. Flatten: optical flow-

guided attention for consistent text-to-video editing. arXiv

preprint arXiv:2310.05922, 2023. 1, 3

[20] Erwin Coumans. Bullet physics simulation. In ACM SIG-

GRAPH 2015 Courses, 2015. 5, 2

[21] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,

Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana

Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:

A universe of annotated 3d objects. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13142–13153, 2023. 5

[22] Jiahua Dong and Yu-Xiong Wang. Vica-nerf: View-

consistency-aware 3d editing of neural radiance fields. In

Thirty-seventh Conference on Neural Information Process-

ing Systems, 2023. 1, 3

[23] Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang,

Albert Lu, Elizabeth Ke, Kevin Liu, Linda Chen, Sunny Tran,

Newman Cheng, et al. A neural network solves, explains,

and generates university math problems by program synthe-

sis and few-shot learning at human level. Proceedings of the

National Academy of Sciences, 119(32):e2123433119, 2022.

3

[24] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir

Zamir. Omnidata: A scalable pipeline for making multi-task

mid-level vision datasets from 3d scans. In Proceedings

of the IEEE/CVF International Conference on Computer

Vision, pages 10786–10796, 2021. 1

[25] Jiemin Fang, Junjie Wang, Xiaopeng Zhang, Lingxi Xie, and

Qi Tian. Gaussianeditor: Editing 3d gaussians delicately

with text instructions. In CVPR, 2024. 1, 3

9

[26] Shuangkang Fang, Yufeng Wang, Yi-Hsuan Tsai, Yi Yang,

Wenrui Ding, Shuchang Zhou, and Ming-Hsuan Yang. Chat-

edit-3d: Interactive 3d scene editing via text prompts. arXiv

preprint arXiv:2407.06842, 2024. 1, 3, 4

[27] Yutao Feng, Yintong Shang, Xuan Li, Tianjia Shao, Chen-

fanfu Jiang, and Yin Yang. Pie-nerf: Physics-based interac-

tive elastodynamics with nerf, 2023. 3

[28] Yutao Feng, Xiang Feng, Yintong Shang, Ying Jiang, Chang

Yu, Zeshun Zong, Tianjia Shao, Hongzhi Wu, Kun Zhou,

Chenfanfu Jiang, and Yin Yang. Gaussian splashing: Unified

particles for versatile motion synthesis and rendering. arXiv

preprint arXiv:2401.15318, 2024. 3

[29] Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang,

Xudong Lin, Dan Roth, Noah A Smith, Wei-Chiu Ma, and

Ranjay Krishna. Blink: Multimodal large language models

can see but not perceive. arXiv preprint arXiv:2404.12390,

2024. 3

[30] Gege Gao, Weiyang Liu, Anpei Chen, Andreas Geiger,

and Bernhard Schölkopf. Graphdreamer: Compositional

3d scene synthesis from scene graphs. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 21295–21304, 2024. 4

[31] Ruiyuan Gao, Kai Chen, Enze Xie, Lanqing Hong, Zhenguo

Li, Dit-Yan Yeung, and Qiang Xu. Magicdrive: Street view

generation with diverse 3d geometry control. arXiv preprint

arXiv:2310.02601, 2023. 1

[32] Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel.

Tokenflow: Consistent diffusion features for consistent video

editing. arXiv preprint arxiv:2307.10373, 2023. 1, 3

[33] Antoine Guédon and Vincent Lepetit. Sugar: Surface-

aligned gaussian splatting for efficient 3d mesh recon-

struction and high-quality mesh rendering. arXiv preprint

arXiv:2311.12775, 2023. 4, 1

[34] Jianfei Guo, Nianchen Deng, Xinyang Li, Yeqi Bai, Bo-

tian Shi, Chiyu Wang, Chenjing Ding, Dongliang Wang,

and Yikang Li. Streetsurf: Extending multi-view im-

plicit surface reconstruction to street views. arXiv preprint

arXiv:2306.04988, 2023. 1

[35] Tanmay Gupta and Aniruddha Kembhavi. Visual program-

ming: Compositional visual reasoning without training. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 14953–14962, 2023. 3,

4, 5

[36] Ayaan Haque, Matthew Tancik, Alexei Efros, Aleksander

Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-

ing 3d scenes with instructions. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

2023. 1, 3, 6, 7, 8

[37] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-

sion probabilistic models. arXiv preprint arxiv:2006.11239,

2020. 3

[38] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan

Carr, Jonathan Ragan-Kelley, and Frédo Durand. Difftaichi:

Differentiable programming for physical simulation. arXiv

preprint arXiv:1910.00935, 2019. 1

[39] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan

Ragan-Kelley, and Frédo Durand. Taichi: a language for

high-performance computation on spatially sparse data struc-

tures. ACM Transactions on Graphics (TOG), 38(6):1–16,

2019.

[40] Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu,

Ye Kuang, Weiwei Xu, Qiang Dai, William T Freeman,

and Frédo Durand. Quantaichi: a compiler for quantized

simulations. ACM Transactions on Graphics (TOG), 40(4):

1–16, 2021. 1

[41] Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong

Yue, David A Ross, Cordelia Schmid, and Alireza Fathi.

Scenecraft: An llm agent for synthesizing 3d scenes as

blender code. In Forty-first International Conference on

Machine Learning, 2024. 4

[42] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li,

Jiajun Wu, and Li Fei-Fei. Voxposer: Composable 3d value

maps for robotic manipulation with language models. arXiv

preprint arXiv:2307.05973, 2023. 4

[43] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si,

Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin,

Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin

Wang, Dahua Lin, Yu Qiao, and Ziwei Liu. VBench: Com-

prehensive benchmark suite for video generative models.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2024. 7

[44] Side Effects Software Inc. SideFX Houdini FX. SideFX,

2018. 1

[45] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin

Nimier-David, Delio Vicini, Tizian Zeltner, Baptiste Nicolet,

Miguel Crespo, Vincent Leroy, and Ziyi Zhang. Mitsuba 3

renderer, 2022. https://mitsuba-renderer.org. 1

[46] Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaox-

iao Long, Wenping Wang, and Yuexin Ma. Gaussianshader:

3d gaussian splatting with shading functions for reflective

surfaces. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 5322–5332,

2024. 1

[47] Ying Jiang, Chang Yu, Tianyi Xie, Xuan Li, Yutao Feng,

Huamin Wang, Minchen Li, Henry Lau, Feng Gao, Yin

Yang, and Chenfanfu Jiang. Vr-gs: A physical dynamics-

aware interactive gaussian splatting system in virtual reality.

arXiv preprint arXiv:2401.16663, 2024. 3

[48] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,

and George Drettakis. 3d gaussian splatting for real-time

radiance field rendering. ACM Transactions on Graphics,

42(4):1–14, 2023. 4, 1

[49] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen

Koltun. Tanks and temples: Benchmarking large-scale scene

reconstruction. ACM Transactions on Graphics (ToG), 36

(4):1–13, 2017. 6

[50] Max Ku, Cong Wei, Weiming Ren, Huan Yang, and Wenhu

Chen. Anyv2v: A plug-and-play framework for any video-

to-video editing tasks. arXiv preprint arXiv:2403.14468,

2024. 1, 3

[51] Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy

Jatavallabhula, Ming Lin, Chenfanfu Jiang, and Chuang Gan.

PAC-neRF: Physics augmented continuum neural radiance

fields for geometry-agnostic system identification. In The

10

Eleventh International Conference on Learning Representa-

tions, 2023. 3

[52] Xiaofan Li, Yifu Zhang, and Xiaoqing Ye. Drivingdif-

fusion: Layout-guided multi-view driving scene video

generation with latent diffusion model. arXiv preprint

arXiv:2310.07771, 2023. 1

[53] Yuan Li, Zhi-Hao Lin, David Forsyth, Jia-Bin Huang, and

Shenlong Wang. Climatenerf: Extreme weather synthesis

in neural radiance field. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), 2023.

1, 3

[54] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol

Hausman, Brian Ichter, Pete Florence, and Andy Zeng. Code

as policies: Language model programs for embodied control.

In 2023 IEEE International Conference on Robotics and

Automation (ICRA), pages 9493–9500. IEEE, 2023. 4, 5

[55] Ruofan Liang, Zan Gojcic, Merlin Nimier-David, David

Acuna, Nandita Vijaykumar, Sanja Fidler, and Zian Wang.

Photorealistic object insertion with diffusion-guided inverse

rendering. arXiv preprint arXiv:2408.09702, 2024. 1

[56] Zhi-Hao Lin, Bohan Liu, Yi-Ting Chen, David Forsyth, Jia-

Bin Huang, Anand Bhattad, and Shenlong Wang. Urbanir:

Large-scale urban scene inverse rendering from a single

video. arXiv preprint arXiv:2306.09349, 2023.

[57] Zhi-Hao Lin, Jia-Bin Huang, Zhengqin Li, Zhao Dong,

Christian Richardt, Tuotuo Li, Michael Zollhöfer, Johannes

Kopf, Shenlong Wang, and Changil Kim. Iris: Inverse ren-

dering of indoor scenes from low dynamic range images.

arXiv preprint arXiv:2401.12977, 2024. 1

[58] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao

Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun

Zhu, et al. Grounding dino: Marrying dino with grounded

pre-training for open-set object detection. arXiv preprint

arXiv:2303.05499, 2023. 4

[59] Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shen-

long Wang. Physgen: Rigid-body physics-grounded image-

to-video generation. In European Conference on Computer

Vision, pages 360–378. Springer, 2025. 3

[60] Jiaxi Lv, Yi Huang, Mingfu Yan, Jiancheng Huang,

Jianzhuang Liu, Yifan Liu, Yafei Wen, Xiaoxin Chen, and

Shifeng Chen. Gpt4motion: Scripting physical motions in

text-to-video generation via blender-oriented gpt planning.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops, pages

1430–1440, 2024. 3, 4

[61] Yunsheng Ma, Can Cui, Xu Cao, Wenqian Ye, Peiran Liu,

Juanwu Lu, Amr Abdelraouf, Rohit Gupta, Kyungtae Han,

Aniket Bera, et al. Lampilot: An open benchmark dataset

for autonomous driving with language model programs. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 15141–15151, 2024.

4

[62] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun

Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided

image synthesis and editing with stochastic differential equa-

tions. In International Conference on Learning Representa-

tions, 2022. 3

[63] Ashkan Mirzaei, Tristan Aumentado-Armstrong, Marcus A

Brubaker, Jonathan Kelly, Alex Levinshtein, Konstantinos G

Derpanis, and Igor Gilitschenski. Watch your steps: Local

image and scene editing by text instructions. arXiv preprint

arXiv:2308.08947, 2023. 1, 3

[64] Chong Mou, Mingdeng Cao, Xintao Wang, Zhaoyang

Zhang, Ying Shan, and Jian Zhang. Revideo: Remake a

video with motion and content control, 2024. 1, 3

[65] Hao Ouyang, Qiuyu Wang, Yuxi Xiao, Qingyan Bai, Jun-

tao Zhang, Kecheng Zheng, Xiaowei Zhou, Qifeng Chen,

and Yujun Shen. Codef: Content deformation fields for

temporally consistent video processing. arXiv preprint

arXiv:2308.07926, 2023. 1, 3

[66] Yicong Peng, Yichao Yan, Shengqi Liu, Yuhao Cheng,

Shanyan Guan, Bowen Pan, Guangtao Zhai, and Xiaokang

Yang. Cagenerf: Cage-based neural radiance field for gener-

alized 3d deformation and animation. Advances in Neural

Information Processing Systems, 35:31402–31415, 2022. 3

[67] Pakkapon Phongthawee, Worameth Chinchuthakun, Non-

taphat Sinsunthithet, Amit Raj, Varun Jampani, Pramook

Khungurn, and Supasorn Suwajanakorn. Diffusionlight:

Light probes for free by painting a chrome ball. arXiv

preprint arXiv:2312.09168, 2023. 5, 1

[68] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny.

Bézier and B-spline techniques. Springer, 2002. 2

[69] Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei,

Xintao Wang, Ying Shan, and Qifeng Chen. Fatezero:

Fusing attentions for zero-shot text-based video editing.

arXiv:2303.09535, 2023. 1, 3

[70] Yi-Ling Qiao, Alexander Gao, and Ming C. Lin. Neu-

physics: Editable neural geometry and physics from monocu-

lar videos. In Conference on Neural Information Processing

Systems (NeurIPS), 2022. 3

[71] Yi-Ling Qiao, Alexander Gao, Yiran Xu, Yue Feng, Jia-Bin

Huang, and Ming C. Lin. Dynamic mesh-aware radiance

fields. ICCV, 2023. 1, 3

[72] Lingteng Qiu, Guanying Chen, Xiaodong Gu, Qi Zuo, Mu-

tian Xu, Yushuang Wu, Weihao Yuan, Zilong Dong, Liefeng

Bo, and Xiaoguang Han. Richdreamer: A generalizable

normal-depth diffusion model for detail richness in text-to-

3d. arXiv preprint arXiv:2311.16918, 2023. 5

[73] Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang.

Language-driven physics-based scene synthesis and editing

via feature splatting. In European Conference on Computer

Vision (ECCV), 2024. 3, 2

[74] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-

ing transferable visual models from natural language super-

vision. In International conference on machine learning,

pages 8748–8763. PMLR, 2021. 5

[75] Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei,

Mingzhe Wang, Yiming Zuo, Karhan Kayan, Hongyu Wen,

Beining Han, Yihan Wang, et al. Infinite photorealistic

worlds using procedural generation. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recog-

nition, pages 12630–12641, 2023. 4

11

[76] Alexander Raistrick, Lingjie Mei, Karhan Kayan, David Yan,

Yiming Zuo, Beining Han, Hongyu Wen, Meenal Parakh,

Stamatis Alexandropoulos, Lahav Lipson, et al. Infinigen

indoors: Photorealistic indoor scenes using procedural gen-

eration. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 21783–

21794, 2024. 4

[77] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence

embeddings using siamese bert-networks. arXiv preprint

arXiv:1908.10084, 2019. 5

[78] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kun-

chang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen,

Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang,

Hongyang Li, Qing Jiang, and Lei Zhang. Grounded sam:

Assembling open-world models for diverse visual tasks,

2024. 7

[79] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models, 2021. 3

[80] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-motion revisited. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016. 6, 1

[81] Johannes L Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

4104–4113, 2016. 4

[82] phymec Sergey Sharybin, ideasman42. Cell Fracture, 2024.

https://extensions.blender.org/add-ons/cell-fracture/. 2

[83] Yuan Shen, Bhargav Chandaka, Zhi-Hao Lin, Albert Zhai,

Hang Cui, David Forsyth, and Shenlong Wang. Sim-on-

wheels: Physical world in the loop simulation for self-

driving. IEEE Robotics and Automation Letters, 2023. 1

[84] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal,

Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason,

and Animesh Garg. Progprompt: Generating situated robot

task plans using large language models. In 2023 IEEE Inter-

national Conference on Robotics and Automation (ICRA),

pages 11523–11530. IEEE, 2023. 4

[85] Liangchen Song, Liangliang Cao, Jiatao Gu, Yifan

Jiang, Junsong Yuan, and Hao Tang. Efficient-

nerf2nerf: Streamlining text-driven 3d editing with mul-

tiview correspondence-enhanced diffusion models. arXiv

preprint arXiv:2312.08563, 2023. 3

[86] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: Waymo open dataset. In Proceed-

ings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 2446–2454, 2020. 6, 7, 1

[87] Shuo Sun, Zekai Gu, Tianchen Sun, Jiawei Sun, Chen-

gran Yuan, Yuhang Han, Dongen Li, and Marcelo H Ang.

Drivescenegen: Generating diverse and realistic driving sce-

narios from scratch. IEEE Robotics and Automation Letters,

2024. 1

[88] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,

Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,

Naejin Kong, Harshith Goka, Kiwoong Park, and Victor

Lempitsky. Resolution-robust large mask inpainting with

fourier convolutions. In Proceedings of the IEEE/CVF win-

ter conference on applications of computer vision, pages

2149–2159, 2022. 5

[89] Nils Thuerey and Tobias Pfaff. MantaFlow, 2018.

http://mantaflow.com. 5, 3

[90] Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changxing Liu,

Hao Zhao, Siheng Chen, and Yanfeng Wang. Editable scene

simulation for autonomous driving via collaborative llm-

agents. arXiv preprint arXiv:2402.05746, 2024. 3, 1, 7,

9

[91] Jing Wen, Xiaoming Zhao, Zhongzheng Ren, Alexander G

Schwing, and Shenlong Wang. Gomavatar: Efficient an-

imatable human modeling from monocular video using

gaussians-on-mesh. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

2059–2069, 2024. 2

[92] Bichen Wu, Ching-Yao Chuang, Xiaoyan Wang, Yichen Jia,

Kapil Krishnakumar, Tong Xiao, Feng Liang, Licheng Yu,

and Peter Vajda. Fairy: Fast parallelized instruction-guided

video-to-video synthesis. arXiv preprint arXiv:2312.13834,

2023. 1, 3

[93] Jialian Wu, Jianfeng Wang, Zhengyuan Yang, Zhe Gan,

Zicheng Liu, Junsong Yuan, and Lijuan Wang. Grit: A gen-

erative region-to-text transformer for object understanding.

arXiv preprint arXiv:2212.00280, 2022. 7

[94] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian

Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying Shan, Xiaohu

Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning

of image diffusion models for text-to-video generation. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 7623–7633, 2023. 1, 3

[95] Tianhe Wu, Kede Ma, Jie Liang, Yujiu Yang, and Lei

Zhang. A comprehensive study of multimodal large lan-

guage models for image quality assessment. arXiv preprint

arXiv:2403.10854v3, 2024. 7

[96] Hongchi Xia, Zhi-Hao Lin, Wei-Chiu Ma, and Shenlong

Wang. Video2game: Real-time interactive realistic and

browser-compatible environment from a single video. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4578–4588, 2024. 3

[97] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,

Jose M Alvarez, and Ping Luo. Segformer: Simple and

efficient design for semantic segmentation with transform-

ers. Advances in neural information processing systems, 34:

12077–12090, 2021. 1

[98] Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng,

Yin Yang, and Chenfanfu Jiang. Physgaussian: Physics-

integrated 3d gaussians for generative dynamics. arXiv

preprint arXiv:2311.12198, 2023. 3, 1, 2

[99] Tianhan Xu and Tatsuya Harada. Deforming radiance fields

with cages. In ECCV, 2022. 3

[100] Teng Xu, Jiamin Chen, Peng Chen, Youjia Zhang, Jun-

qing Yu, and Wei Yang. Tiger: Text-instructed 3d

gaussian retrieval and coherent editing. arXiv preprint

arXiv:2405.14455, 2024. 1, 3

[101] Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang,

Chencheng Jiang, Haoran Tan, Jiamu Kang, Yuanhan Zhang,

12

Kaiyang Zhou, et al. Octopus: Embodied vision-language

programmer from environmental feedback. arXiv preprint

arXiv:2310.08588, 2023. 4

[102] Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan

Tompson, Dale Schuurmans, and Pieter Abbeel. Learn-

ing interactive real-world simulators. arXiv preprint

arXiv:2310.06114, 2023. 1

[103] Shuai Yang, Yifan Zhou, Ziwei Liu, , and Chen Change

Loy. Fresco: Spatial-temporal correspondence for zero-shot

video translation. In CVPR, 2024. 1, 3, 6, 7, 8

[104] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,

Pratul P Srinivasan, Richard Szeliski, Jonathan T Barron,

and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-

time view synthesis. In ACM SIGGRAPH 2023 Conference

Proceedings, pages 1–9, 2023. 4, 1

[105] Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke.

Gaussian grouping: Segment and edit anything in 3d scenes.

In ECCV, 2024. 3

[106] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,

and Angela Dai. Scannet++: A high-fidelity dataset of 3d in-

door scenes. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 12–22, 2023. 4, 6, 1

[107] Zehao Yu, Anpei Chen, Bozidar Antic, Songyou Peng, Apra-

tim Bhattacharyya, Michael Niemeyer, Siyu Tang, Torsten

Sattler, and Andreas Geiger. Sdfstudio: A unified framework

for surface reconstruction, 2022. 1

[108] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,

Rongfei Jia, and Lin Gao. Nerf-editing: geometry editing

of neural radiance fields. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 18353–18364, 2022. 3

[109] Albert J Zhai, Yuan Shen, Emily Y Chen, Gloria X Wang,

Xinlei Wang, Sheng Wang, Kaiyu Guan, and Shenlong

Wang. Physical property understanding from language-

embedded feature fields. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 28296–28305, 2024. 3

[110] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding

conditional control to text-to-image diffusion models, 2023.

3

[111] Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y.

Feng, Changxi Zheng, Noah Snavely, Jiajun Wu, and

William T. Freeman. PhysDreamer: Physics-based inter-

action with 3d objects via video generation. arxiv, 2024.

3

[112] Mengqi Zhou, Jun Hou, Chuanchen Luo, Yuxi Wang, Zhaox-

iang Zhang, and Junran Peng. Scenex: Procedural control-

lable large-scale scene generation via large-language models.

arXiv preprint arXiv:2403.15698, 2024. 4

[113] Jingyu Zhuang, Chen Wang, Liang Lin, Lingjie Liu, and

Guanbin Li. Dreameditor: Text-driven 3d scene editing with

neural fields. In SIGGRAPH Asia 2023 Conference Papers,

pages 1–10, 2023. 1, 3

[114] Jingyu Zhuang, Di Kang, Yan-Pei Cao, Guanbin Li, Liang

Lin, and Ying Shan. Tip-editor: An accurate 3d editor fol-

lowing both text-prompts and image-prompts. arXiv preprint

arXiv:2401.14828, 2024. 1, 3

13

AutoVFX: Physically Realistic Video Editing from Natural Language Instructions

Supplementary Material

6. Implementation details

In this section, we provide an overview of our framework,

followed by a detailed explanation of the implementation, in-

cluding scene modeling, simulation, rendering, composition,

and LLM integration. We plan to release the entire codebase

upon acceptance.

6.1. Holistic overview

We use Blender’s modules [18] to implement all the editing,

simulation, and rendering components. These include Cy-

cles renderer, Material Nodes, Mantaflow fluid simulation

and Composition Nodes. We chose Blender because: (1) it

includes all the necessary modules required by AutoVFX,

and (2) it offers a convenient Python-based interface for mod-

ular function encapsulation and code generation. However,

AutoVFX is generic, allowing the easy integration of new

modules for additional functionality. One can choose dif-

ferent low-level implementations, whether Blender or other

tools with a Python-based interface, such as Mitsuba for

rendering [45] or Taichi for simulation [38–40].

6.2. Scene modeling details

Geometry We employ BakedSDF [104], implemented in

SDFStudio [107], to obtain high-quality scene geometry due

to its detailed mesh extraction. Specifically, we use bakedsdf-

mlp model. This model is trained for 250k steps using default

optimization and model settings, with an additional monoc-

ular normal consistency loss set by pipeline.model.mono-

normal-loss-mult=0.1. Monocular normal maps are obtained

from Omnidata [24]. For fully-captured indoor scenes such

as ScanNet++ [106], we enable the inside-outside flag with

pipeline.model.sdf-field.inside-outside=True. For scenes

with distant backgrounds, we enable background modeling

by setting pipeline.model.background-model=mlp.

While BakedSDF excels in capturing object-centric

scenes, it struggles with non-object-centric, long, and nar-

row camera trajectories, such as those in street views for

autonomous driving. To address this limitation, we use

StreetSurf [34] for geometry reconstruction in road scenes

from the Waymo dataset [86]. For a fair comparison, we do

not utilize LiDAR point clouds for precise geometry initial-

ization; instead, we use three camera views (Front, Front

Left, Front Right), consistent with ChatSim [90], along with

monocular normal and depth priors from Omnidata, and sky

masks extracted using SegFormer [97].

Appearance & Semantics To model appearance, we use

both 3D Gaussian Splatting [48] and SuGaR [33]. The model

is first trained with 3D Gaussian Splatting for 15000 steps,

followed by an additional 7000 steps using SuGaR, all with

default optimization parameters. To achieve a denser initial-

ization for better rendering quality, we enhance the Gaussian

initialization from COLMAP [80] points by computing ray-

mesh intersections for each training view and assigning pixel

RGB values and intersected points to set up the Gaussians.

For loss terms, we apply the anisotropic regularizer from

PhysGaussian [98] to prevent the emergence of spiky Gaus-

sians during training. Additionally, we incorporate normal

regularization from GaussianShader [46] to ensure consis-

tency between local geometry and estimated normals. An

anisotropic loss weight of 0.1 and a normal loss weight of

0.01 are used across all scenes. These regularizations help

maintain the Gaussians’ shape and orientation, facilitating

better instance extraction. To avoid false-positive predic-

tions in the semantic branches, we increase the DINO [9]

threshold to 0.45 in DEVA [14]. Full pseudo code for 3D

instance segmentation on both meshes and 3D Gaussians are

illustrated in Fig. 17.

Lighting To illuminate the scene with surrounding light,

we extract an HDR environmental map from a single image

using DiffusionLight [67]. We begin by center-cropping

the image to 512x512 pixels, then inpainting a chrome ball

using a diffusion model. The chrome ball is subsequently un-

wrapped to create the environmental map. Multiple chrome

balls with varying exposure values are generated and merged

to produce the final HDR map. This map is then transformed

based on the camera poses of the original image to align it

with the world space.

For consistent lighting effects in Blender, we adjust the

HDR map’s intensity according to the scene type: 0.6 for

outdoor scenes and 2.0 for indoor scenes. In fully-captured

indoor environments like ScanNet++ [106], where HDR

maps are insufficient due to occlusions by surrounding ge-

ometry like walls and ceilings, we extract emitter meshes

by unprojecting over-saturated pixels into 3D space and us-

ing majority voting to estimate the emitter locations. These

meshes are imported into Blender as white-colored emitters,

with their strength set to 100. For outdoor autonomous driv-

ing scenes, such as those in Waymo [86], the HDR map alone

is insufficient for casting strong shadows. To address this,

we determine the sunlight direction from the brightest area

in the HDR map and add a corresponding sunlight source in

Blender, enhancing shadow realism on the road. The impact

of this additional sunlight source is illustrated in Fig. 9.

1

“Drop 5 basketballs on the table.” “Insert an animated Goku figurine on the ground and make it on fire.”

“Place a pikachu with pebble material and a pikachu with rosewood material on the table.” “Insert a red pikachu and a cyan pikachu on the table.”

“Make a bird flying around and above the table.” “Generate a zombie character wearing hat and put it on the table.”

“Make the vase with flowers 1.5 times bigger, then make it drop onto the table.” “Rotate the vase with flowers by 90 degrees, then drop a basketball from the top of this vase to make it fracture.”

“Place a trophy on the table.” “Put a Tony Stark on the floor covered with smoke.”

“Drop 10 forks onto the blue gloves.” “Insert a rusty chair on the carpet.”

“Break the sculpture.” “Drop seven apples on the floor and paint them in rainbow colors.”

Figure 7. More editing results using AutoVFX.

6.3. Scene simulation details

Animation and rigidbody simulation To simulate the

movement of animated objects along a series of 3D key-

points, we use Bézier curves [68] to generate a smooth,

continuous path from discrete sample positions, ensuring

seamless transitions of the animated objects. We additionally

model object-scene rigid body interactions using Blender,

which is based on the Bullet physics engine [20]. To achieve

both accurate and realistic interactions, we also pre-compute

the center of mass and convex hull for collision checking

of any interactive objects. For object assets extracted from

the scene, which require rendering with 3D Gaussians post-

simulation, we preserve the rigid body transformations at

each timestep. These transformations are then applied to

the 3D Gaussians during rendering. This process closely

follows the principles of recent works on deforming Gaus-

sians [73, 91, 98], where the centroids and covariance of

the Gaussians are adjusted through translation, rotation, and

scaling.

Physical effects Realistic VFX effects often require com-

pelling physical simulations, such as fracture effects or par-

ticle effects like smoke and fire. For fracture effects, we

employ the cell fracture algorithm [82] to generate self-

fracturing objects. We configure the fracture count to 100

and apply the object’s average color to the internal fractures.

2

Input Observation “Insert a physics-enabled Benz G 20 meters in front of us with random 2D rotation. Add a Ferriari moving forward.”

Input Observation “Insert a statue to be able to fracture 20 meters in front of our vehicle. Then, make a Porsche driving forward.”

Input Observation “Drop a Benz G with fire randomly in 10 meters front of our vehicles and from 3 meters high.”

Figure 8. More dynamic simulation results of AutoVFX on autonomous driving scenes.

Without sunlight With sunlight

Figure 9. Comparison of simulation results with and without sun-

light in Waymo scenes.

For particle effects, we adopt Blender’s computational fluid

dynamics addon Mantaflow [89], which is an efficient imple-

mentation of the FLIP-based [7] particle simulation method,

to simulate smoke emission. To balance computational ef-

ficiency and quality in Blender, we configure the smoke

domain with a resolution of 128, an adaptive margin of 4,

an adaptive threshold of 0.005, and a dissolve speed of 30.

We modify the material nodes to further enhance the realism

of smoke and fire effects. For smoke simulation, we set

the smoke color to (0.1, 0.1, 0.1, 1) and the smoke density

to 70. For fire simulation, we reduce the smoke density to

50, set the object’s temperature to 1500, and configure the

blackbody tint and intensity to (1, 0.3886, 0.0094, 1) and 5,

respectively.

6.4. Rendering & composition details

Rendering We use Blender’s Cycles renderer for render-

ing. Cycles is Blender’s physically-based path tracing ren-

derer, designed for high-quality, photorealistic rendering. It

accurately simulates light interactions, including reflections,

refractions, and global illumination, making it ideal for realis-

tic visual effects and animations. In our workflow, we render

three outputs: foreground objects, background meshes, and

a combined render of the two, as detailed in the main paper.

To make foreground objects affected by lighting from the

background, we set visible_camera=False for back-

ground meshes to make them invisible to the camera on the

first light bounce but still affects subsequent bounces. The

default number of samples in Cycles are set to 64, increased

to 512 for scenes involving smoke and fire simulations to

better capture particle effect details. Images are rendered at

2x resolution to mitigate aliasing during compositing.

Compositing The final visual effects are achieved through

a compositing pipeline that blends visual content into the

original frames. This process involves extracting fore-

ground and background masks, and foreground content via

alpha thresholding and occlusion reasoning, and calculating

shadow intensity as the pixel value ratio between the com-

bined and background renders. Shadows are then blended

into the original image, followed by the integration of fore-

ground content, resulting in the final composited video. The

composition pipeline is illustrated in Fig. 10.

6.5. LLM integration details

Modular functions design The predefined editing mod-

ules are encapsulated into callable and executable functions

that can be utilized by LLM. We provide a list of all de-

signed modules, along with a brief introduction to each,

including its purpose, inputs, and outputs. For further de-

tails on the editing modules, please refer to the attached file

3

Figure 10. Our image composition pipeline. The process starts by generating foreground and background masks, along with foreground

content, through alpha thresholding and occlusion reasoning based on rendered objects and background meshes. Next, shadow intensity is

calculated by determining the ratio of pixel values between the combined rendering of all objects and the background meshes. Finally, the

shadows and foreground content are sequentially blended into the original image to produce the final result.

edit_utils.py. Details of editing modules:

• detect_object

– Purpose: Detects and extracts instance-level meshes

from a scene.

– Input:

* scene_representation: The representation of the scene

in which to detect the object.

* object_name: The name of the object to be detected

in the scene.

– Output:

* A dictionary containing information about the de-

tected object.

• sample_point_on_object

– Purpose: Samples a point on the surface of an object

mesh.

– Input:

* scene_representation: The scene in which the object

is located.

* obj: The object on which to sample a point.

– Output:

* A 3D point location on the object.

• sample_point_above_object

– Purpose: Samples a point above an object at a specified

vertical offset.

– Input:

* scene_representation: The scene in which the object

is located.

* obj: The object above which to sample a point.

* VERTICAL_OFFSET: The vertical distance above

the object to sample the point (optional).

– Output:

* A 3D point location above the object.

• retrieve_asset

– Purpose: Retrieves a 3D asset by its name from obja-

verse.

– Input:

* scene_representation: The scene in which to retrieve

the asset.

* object_name: The name of the asset to retrieve.

* is_animated: Boolean flag indicating if the asset is

animated (optional).

* is_generated: Boolean flag indicating if the asset is

generated (optional).

– Output:

* A dictionary containing information about the re-

trieved object.

• insert_object

– Purpose: Inserts an object into the scene.

4

– Input:

* scene_representation: The scene representation into

which the object is inserted.

* obj: The object to insert into the scene.

– Output: None

• remove_object

– Purpose: Removes an object from the scene, with op-

tional inpainting.

– Input:

* scene_representation: The scene from which the ob-

ject is to be removed.

* obj: The object to be removed.

* remove_gaussians: Boolean flag to determine if as-

sociated Gaussian splatting should also be removed

(optional).

– Output: None

• update_object

– Purpose: Updates an object’s information in the scene.

– Input:

* scene_representation: The scene representation that

contains the object.

* obj: The object whose information is to be updated.

– Output: None

• allow_physics

– Purpose: Enables rigid body simulation for an object.

– Input:

* obj: The object to enable physics for.

– Output:

* Updated object dictionary with rigid body settings.

• add_fire

– Purpose: Adds fire to an object in the scene.

– Input:

* scene_representation: The scene representation con-

taining the object.

* obj: The object to which fire is added.

– Output: None

• add_smoke

– Purpose: Adds smoke to an object in the scene.

– Input:

* scene_representation: The scene representation con-

taining the object.

* obj: The object to which smoke is added.

– Output: None

• set_static_animation

– Purpose: Sets an object’s animation to be static.

– Input:

* obj: The object to set as static.

– Output:

* Updated object dictionary with animation settings.

• set_moving_animation

– Purpose: Sets an object’s trajectory based on a list of

3D points.

– Input:

* obj: The object to animate.

* points: List of 3D points defining the trajectory.

– Output:

* Updated object dictionary with trajectory settings.

• init_material

– Purpose: Initializes a material instance with default

values.

– Input: None

– Output:

* An instance of the Material class.

• retrieve_material

– Purpose: Retrieves a material by its name from Poly-

Haven.

– Input:

* scene_representation: The scene representation that

requires the material.

* material_name: The name of the material to retrieve.

– Output:

* Path to the material folder.

• apply_material

– Purpose: Applies a material to an object.

– Input:

* obj: The object to which the material is applied.

* material: The material instance to apply.

– Output:

* Updated object dictionary with applied material.

• allow_fracture

– Purpose: Enables fracturing of an object.

– Input:

* obj: The object to enable fracturing for.

– Output:

* Updated object dictionary with fracture settings.

• make_break

– Purpose: Breaks an object into multiple pieces.

– Input:

* obj: The object to break.

– Output:

* Updated object dictionary with break settings.

• make_melting

– Purpose: Melts down an object into viscous liquid.

– Input:

* obj: The object to melt down.

– Output:

* Updated object dictionary with melting settings.

• get_object_center_position

– Purpose: Returns the position of the object at its center.

– Input:

* obj: The object whose center position is required.

– Output:

* A 3D position vector.

• get_object_bottom_position

– Purpose: Returns the position of the object at its bot-

tom.

5

– Input:

* obj: The object whose bottom position is required.

– Output:

* A 3D position vector.

• translate_object

– Purpose: Translates an object by a given translation

vector.

– Input:

* obj: The object to translate.

* translation: The translation vector.

– Output:

* Updated object dictionary with new position.

• rotate_object

– Purpose: Rotates an object by a given rotation matrix.

– Input:

* obj: The object to rotate.

* rotation: The rotation matrix.

– Output:

* Updated object dictionary with new rotation.

• scale_object

– Purpose: Scales an object by a given scale factor.

– Input:

* obj: The object to scale.

* scale: The scale factor.

– Output:

* Updated object dictionary with new scale.

• get_random_2D_rotation

– Purpose: Returns a random 2D rotation matrix (rotation

around the z-axis).

– Input: None

– Output:

* 3x3 rotation matrix.

• get_random_3D_rotation

– Purpose: Returns a random 3D rotation matrix.

– Input: None

– Output:

* 3x3 rotation matrix.

• make_copy

– Purpose: Creates a deep copy of an object.

– Input:

* obj: The object to copy.

– Output:

* New object dictionary with a unique object_id.

• add_event

– Purpose: Adds an event to the scene involving an ob-

ject.

– Input:

* scene_representation: The scene representation to

which the event is added.

* obj: The object involved in the event.

* event_type: The type of event to add (e.g., "break",

"incinerate").

* start_frame: The frame at which the event starts (op-

tional).

* end_frame: The frame at which the event ends (op-

tional).

– Output: None

• get_camera_position

– Purpose: Returns the camera position.

– Input:

* scene_representation: The scene representation con-

taining the camera.

– Output:

* 3D position vector.

• get_vehicle_position

– Purpose: Returns the position of a vehicle in the scene.

– Input:

* scene_representation: The scene representation con-

taining the vehicle.

– Output:

* 3D position vector (with z-value set to 0.0).

• get_direction

– Purpose: Returns the direction vector from the camera

position in one of six directions (front, back, left, right,

up, down).

– Input:

* scene_representation: The scene representation con-

taining the camera.

* direction: The direction in which to get the vector

(e.g., "front", "back").

– Output:

* 3D direction vector.

• retrieve_chatsim_asset

– Purpose: Retrieves a 3D asset by object name from the

chatsim asset bank.

– Input:

* scene_representation: The scene representation re-

quiring the asset.

* object_name: The name of the asset to retrieve.

– Output:

* Dictionary containing information about the retrieved

object.

Prompts design We illustrate the prompt structure used

for Python code generation in Fig. 11. The structure includes

the task context, detailed function usage descriptions, and

a series of code generation examples. For comprehensive

code generation examples used in our method, please refer to

the attached file prompt.txt. Additionally, we presents

the prompt structure employed for estimating object sizes

in real-world scale in Fig. 12. In this process, users provide

the object name and a rendered view of the object asset,

allowing GPT-4V to estimate the real-world dimensions of

the queried objects. Finally, we showcase several generated

programs by our method in Fig. 13, demonstrating that our

method can effectively generate programs from complex text

6

Figure 11. Our prompt template designed for code generation

using GPT-4. The user instruction is inserted into the placeholder

{PROMPT}.

Figure 12. Our prompt template designed for real-world scale

estimation using GPT-4V. The name of the queried object and its

encoded rendered image are inserted into {OBJECT_NAME} and

{BASE64_IMAGE}, respectively.

instructions, including spatial reasoning, object counting,

and handling highly abstract commands.

7. Quantitative evaluation details

Prompts for LLM IQA Inspired by [95], we use GPT-4o

to evaluate the quality of edited images from two perspec-

tives. First, we assess the "Overall Perceptual Quality" by

comparing the edited results and selecting the best among

four methods. Second, we evaluate the individual quality of

each method by assigning a 0-1 score for “Text Alignment”,

Figure 13. Demonstration of generated programs from our method.

This illustrates our ability to handle various complex instructions,

including spatial reasoning (Query 1), object counting (Query 2),

and highly abstract commands (Query 3).

“Photorealism”, and “Structural Preservation”. The prompt

structure used for these evaluations is presented in Fig. 14.

User study design We conduct a user study with 36 partic-

ipants to evaluate the quality of edited videos. The study is

detailed in Fig. 18. It consists of 30 questions, each contain-

ing an original video, four edited versions arranged into one,

and a corresponding target editing instruction. Participants

are required to answer two questions, the first focus on "Text

Alignment", and the second on "Overall Realism". For the

second question, users select the video that demonstrates the

highest realism based on their choices from the first question.

If none of the edited videos aligned with the instructions,

users are given the option to select “None of the above” to

avoid forced selection.

8. More qualitative results

Additional qualitative results of video editing using our

method are illustrated in Fig. 7. We also demonstrate our

method’s capability in road scene simulation, comparing

it with ChatSim [90] in Fig. 16, and further highlight our

ability to handle diverse and dynamic interactions in road

scenes, which ChatSim is unable to achieve, as shown in

Fig. 8.

7

Figure 14. Our prompt template designed for image quality as-

sessment using GPT-4o. It is structured with placeholders for the

editing instructions, original image, and edited images, which are

inserted into {instructions}, {original_image}, and {edited_image},

respectively.

9. Failure case analysis / Limitations

We conduct a failure analysis of our method across 55 prede-

fined editing instructions. A failure is identified if the edited

video is not photo-realistic, does not adhere to commonsense

physics, or fails to align with the text instructions. Overall,

we observe 19 failure cases, categorized as follows:

• Scene modeling: Errors related to scene geometry and

rendering, including erroneous instance extraction due to

imperfect mesh reconstruction or semantic predictions,

and blurry inpainting results after object removal.

• Editing modules: Failures arising from incorrect exe-

cution of editing modules, such as inaccurate position

sampling for placement, wrong asset retrieval, or incorrect

scale estimation.

• Unsupported function: Issues related to the absence of

physical effects like fluid or snow simulation, or global

Figure 15. Pie chart representing the amount of failure cases across

different failure categories based on our edited results.

style changes to the entire scene.

• Code generation: Failures caused by GPT-4 misinterpret-

ing predefined function modules, leading to syntax errors

during execution.

A pie chart of statistics of these failure cases is presented

in Fig. 15. Most failures occur in scene modeling and editing

modules, which could be mitigated by integrating more ro-

bust methods into our pipeline. Unsupported function might

be addressed by incorporating new modules to handle these

scenarios and specifying their use through in-context exam-

ples. Additionally, more precise and careful specification of

module usage within in-context examples can help resolve

issues related to incorrect code generation.

8

Input Observation “Add a Audi moving foward on another lane.”

C
h

at
S

im
[9

0
]

O
u

rs

Input Observation “Add a Benz S driving towards us.”

C
h

at
S

im
[9

0
]

O
u

rs

Input Observation “Making a police car chasing behind a tesla roadster in front of us.”

C
h

at
S

im
[9

0
]

O
u

rs

Figure 16. Qualitative comparison with ChatSim [90] on autonomous driving scenes.

9

Algorithm 1 3D Instance Segmentation

1: Input:M: all mesh faces, G: 3D Gaussians, N : number of views, P: projection matrices of N views, S: 2D segmentation

masks of N views

2: Output: F ∗: set of selected mesh faces, G∗: set of selected 3D Gaussians

3: procedure SEGMENT(M,G, N,P,S)

4: for each n ∈ {1, 2, . . . , N} do

5: In ← RayMeshIntersect(M,Sn,Pn) ▷ In: set of intersected faces

6: for each f ∈M do ▷ visibility voting for each face f

7: V (f)← 1

N

∑
N

n=1
I(f ∈ In)

8: for each threshold τ ∈ {0.05, 0.10, 0.15, . . . , 0.95} do

9: F (τ)← {f ∈M | V (f) ≥ τ} ▷ F (τ): set of mesh faces above threshold τ

10: G(F (τ))← argminG Distance(G, f) ∀f ∈ F (τ) ▷ G(F (τ)): set of 3D Gaussians above threshold τ

11: A
τ ← RenderAlphaMask(G(F (τ)))

12: mIoU(τ)← 1

N

∑
N

i=1

|Aτ

i
∩Si|

|Aτ

i
∪Si|

13: τ∗ ← argmaxτ mIoU(τ)
14: F ∗ ← F (τ∗)
15: G

∗ ← G(F (τ∗))
16: return F ∗, G∗

Figure 17. Pseudo code for 3D instance segmentation on meshes and 3D Gaussians.

10

Figure 18. Design of our user study.

11

	. Introduction
	. Related Work
	. Text-Driven VFX Creator
	. 3D Scene Modeling
	. Scene Editing and Simulation
	. Scene Rendering and Video Compositing
	. LLM Integration

	. Experiments
	. Experimental Details
	. Qualitative evaluation
	. Quantitative evaluation

	. Conclusion
	. Implementation details
	. Holistic overview
	. Scene modeling details
	. Scene simulation details
	. Rendering & composition details
	. LLM integration details

	. Quantitative evaluation details
	. More qualitative results
	. Failure case analysis / Limitations

